
15-112
Summer 2019 Final Exam

June 21, 2019

Name:

Andrew ID:

Recitation Section:

• You may not use any books, notes, or electronic devices during this exam.

• Show your work on the exam to receive credit.

• You may use the backs of pages as scratch paper. Nothing written on the back of any
pages will be graded.

• You may complete the problems in any order you’d like; you may wish to start with
the last three problems, which are worth most of the credit.

• All code samples run without crashing. Assume any imports are already included as
required.

• Good luck!

Don’t write anything in the table below.

Question Points Score

1 10

2 10

3 10

4 15

5 15

6 18

7 22

Total: 100

15-112 Summer 2019 Final Exam June 21, 2019

1. (10 points) Code Tracing

Indicate what each will print. Place your answer (and nothing else) in the box below
each block of code.

def ct(lst):

d1 = dict()

for i in range(len(lst)):

If lst[i] not in d1:

d1[lst[i]] = 0

d1[lst[i]] += 1

print(d1)

d2 = dict()

for key in d1:

d2[d1[key]] = key

print(d2)

for key in d2:

d1[key] = d2[key]*2

for key in d1:

print("key:", key, "value:", d1[key])

return d1.get(4, 1)

lst = [1, 5, 1, 1, 2, 5]

print(ct(lst))

Page 1 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

2. (10 points) Reasoning Over Code

For each function, find values of the parameters so that the function will return True.
Place your answer (and nothing else) in the box below each block of code.

def roc(L, depth=0):

assert(len(set(L)) == len(L))

assert(len(L) % 4 == 0 and len(L) // 3 == 2)

assert(L[0] + L[-1] == 10)

assert(L[0] < L[1])

if depth < 4:

L = roc(L[2:] + L[:2], depth + 1)

return True

Page 2 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

3. Short Answer

Answer each of the following very briefly.

(a) (3 points) State the big O of selection sort, and in a couple of words, briefly explain
why.

(b) (2 points) In a couple of words, explain why this code will crash.

a = (419,420)

a[0] = 420

a[1] = 421

(c) (3 points) List 3 style guidelines from the 112 website, and a small code snippet
violating the three guidelines (no more than 10 lines of code).

Page 3 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

(d) (2 points) In wordsearch, we wrote multiple helper functions in our implementation.
Name one of them (name does not have to be exact), and what its purpose was.

Page 4 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

4. (15 points) Big O: What is the Big-O runtime of each of the following in terms of N?

Note: The big O’s of each line will be graded as well - your overall big O will be graded
based on the answers you put for each line. Note that for loops, write the big O based
on the amount of times the loop will run.

Built-in Big-O Runtimes
Sets Lists

len(S) O(1) L[i:j:k] O((j − i)/k) len(lst) O(1)
item in S O(1) L.pop(0) O(N) item in lst O(N)
S.add(item) O(1) L.append(item) O(1) lst.insert(0, elem) O(N)
S.remove(item) O(1) sorted(L) O(NlogN)

def bigOh1(L): # Big O

assume L is an NxN (square) 2d list

N = len(L) # _____

s = 0 # _____

for row in L: # _____

a = sorted(row) # _____

s += 1 # _____

return s # _____

def bigOh2(L): # Big O

for i in range(len(L)): # _____

for j in range(len(L)): # _____

for k in range(len(L)): # _____

if i == j == k: # _____

return False # _____

return True

def bigOh3(S): #S is a set, not a string # Big O

L = [] # _____

for elem in S: # _____

L.insert(0, elem) # _____

for i in range(len(L)): # _____

L.append(5) # _____

elem0 = L.pop(0) # _____

elem1 = L.pop(0) # _____

resultL = ([elem0, elem1])*(len(s)**2) # _____

return sorted(result) # _____

Page 5 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

def bigOh4(L): # Big O

newL = [] # _____

while(L != []): # _____

newL.append(L.pop(0)) # _____

L = L[:len(L)/4] # _____

newL = sorted(newL) # _____

return newL # _____

Page 6 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

5. (15 points) Free Response: Fish and Shark classes

Write the classes Fish and Shark so that the following test code runs without errors.
Do not hardcode against the values used in the testcases, though you can assume the
testcases cover the needed functionality. You must use proper object-oriented design,
including good inheritance, or you will lose points. The test cases continue on page 8 -
you can write your solution on page 8 and 9.

a fish has a name, a species, and a location

nemo = Fish("Nemo", "clownfish", "anemone")

assert(str(nemo) == "Nemo is a clownfish in the anemone.")

dory = Fish("Dory", "tang fish", "coral reef")

assert(str(dory) == "Dory is a tang fish in the coral reef.")

marlin = Fish("Marlin", "clownfish", "anemone")

assert(str(marlin) == "Marlin is a clownfish in the anemone.")

assert(marlin != nemo)

assert(dory != nemo)

fish can swim and get lost

assert(nemo.isLost() == False)

nemo.swim()

assert(str(nemo) == "Nemo is a clownfish in the open ocean.")

assert(nemo.isLost() == True)

dory.swim()

assert(dory.isLost() == True)

assert(marlin.isLost() == False)

fish travel in schools

school = set()

assert(nemo not in school)

school.add(nemo)

assert(dory not in school)

school.add(dory)

assert(marlin not in school)

sharks are a species of fish

bruce = Shark("Bruce", "caves")

assert(isinstance(bruce, Fish))

assert(str(bruce) == "Bruce is a shark in the caves.")

changedBruce = Shark("Bruce", "caves")

changedBruce.swim()

assert(str(changedBruce) == "Bruce is a shark in the open ocean.")

assert(changedBruce.isLost() == nemo.isLost())

assert(changedBruce.meetFish() == "Fish are friends not food!")

school.add(changedBruce)

Page 7 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

assert(changedBruce != bruce)

assert(bruce not in school)

assert(changedBruce in school)

print("done!")

Page 8 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

Additional Space 1 for Answer to Question 6

Page 9 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

6. (18 points) Free Response: completeKingsTour - the comeback of isKingsTour

Background: Recall that on a board, a king can move to any adjacent square in any of
the possible 8 directions. Just like from homework 6, a valid kings tour is a series of legal
king moves such that each square is visited exactly once. We can represent a King’s tour
as a 2D List where each number represents the order in which the square was visited,
from 1 to N2. For example,

[[3, 2, 1], [[1, 2, 3],

[6, 4, 9], [7, 4, 8],

[5, 7, 8]] [6, 5, 9]]

In this case, the first list is a valid kings tour, since every consecutive number is adjacent
to each other, and each number from 1 to 32 appears exactly once. However, the second
list isn’t a kings tour, since 7 is not adjacent to 8. Furthermore, we’ll say that a board
represents a partial King’s tour, if it represents a kings tour of the numbers from 1 up
to some number less than N2. Unfilled squares will be represented by 0.

With this in mind, write the function completeKingsTour(board), which takes in a board
representing a partial King’s tour, and returns a board containing the complete King’s
tour, or None if no such board exists. If multiple King’s tours exist, you may return any
of them. You can only fill in positions that have 0’s in the initial board - you may not fill
in positions that have numbers to begin with. Two example test cases are shown below:

board1 = [[3, 2, 1],

[0, 4, 0],

[0, 0, 0]]

completeKingsTour(board) returns any valid solution,

could return the left board in the above example.

board2 = [[0, 0, 1],

[0, 2, 5],

[3, 4, 0]]

assert(completeKingsTour(board2) == None)

board1 is a partial King’s tour up until 4, since 1 through 4 appear adjacent to each
other, and the rest of the numbers are 0. board2 is also a partial Kings tour, but no
solutions exist, so completeKingsTour will return None.

You must use recursive backtracking in your solution.

Key assumptions/hints:

• You may assume that a isPartialKingsTour(board, number) function is written for
you, which takes in a board and a number, and returns whether or not the board
represents a partial King’s tour up until that number.

• You may assume the passed in board is a valid partial King’s tour.

Page 10 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

• Your solution should work for any sized square board.

Page 11 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

Additional Space 1 for Answer to Question 6

Page 12 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

Additional Space 2 for Answer to Question 6

Page 13 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

7. (22 points) Free Response: optionally OOPy Animation Using our animation
framework and assuming that run() is already written, write init(data), mousePressed(event,
data), keyPressed(event, data), and redrawAll(data) for an animation with the following
specification:

• There are two types of dots: Speeding Dots and Indecisive Dots

• Speeding Dots:

Black dots with radius 20 with a random initial speed

Appear in a random position on the screen every five seconds

Move horizontally left and right constantly

Wraparound at the edges

• Indecisive Dots:

Red dots with radius 10 with speed 10

Appear in a random position every ten seconds

Move vertically up and down constantly

Rebound from edges (i.e. when an indecisive dot hits an edge it bounces back
in the direction it came)

• When the user presses s, the speeding dots increase their speed by 5 up to a max
speed of 50; if a speeding dot is already moving at speed 50, it should remain at
that speed

• When the user presses c, the indecisive dots switch direction (i.e. if a dot was
moving up, it will now move down)

Make reasonable assumptions for anything not specified here. Do not hardcode values
for the width or height of the canvas. We recommend that, to save time writing, you
abbreviate canvas, event, and data: use c, e and d, respectively. You should use short
variable names.

You may use either regular animation or OOPy animation for this problem.

Page 14 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

Additional Space 1 for Answer to Question 7

Page 15 of 16 a

15-112 Summer 2019 Final Exam June 21, 2019

Additional Space 2 for Answer to Question 7

Page 16 of 16 a

